2.3 Vector Algebra

Reading Assignment: pp. 11-16

You understand scalar math, but what about vector mathematics?

Consider, for example:

A.

B.

C.

D.

Q:

A: HO: Arithmetic Operations of Vectors

B. Arithmetic Operations of Vectors and Scalars

Say b is a scalar and \overline{A} is a vector.

Q: What then is $\overline{A} + b$ or $b - \overline{A}$?

A:

C. Multiplicative Operations of Vectors and Scalars

Q: So, does the **multiplication** of scalar *b* and vector \overline{A} (i.e., $b\overline{A}$ or $\overline{A}b$) have any meaning?

A:

<u>HO: Multiplicative Operations of Vectors and</u> <u>Scalars</u>

We can now examine a super-important concept:

HO: The Unit Vector

- D. Multiplicative Operations of Vectors
- Q: Can we multiply two vectors?

A:

HO: The Dot Product

HO: The Cross Product

HO: The Triple Product

E. Vectors Algebra

Now that we know the rules of vector operations, we can analyze, manipulate, and simplify vector operations!

HO: Example: Vector Algebra

HO: Scalar, Vector, or Neither?

F. Orthogonal and Orthonormal Vector Sets

We can now use vector algebra to write equations that **specify** some relationship between sets of vectors.

HO: Orthogonal and Orthonormal Vector Sets

Arithmetic Operations

of Vectors

B

Vector Addition

Consider two vectors, denoted A and B.

A

Q: Say we **add** these two vectors together; what is the **result**?

A: The addition of two vectors results in another vector, which we will denote as C. Therefore, we can say:

 $\mathbf{A} + \mathbf{B} = \mathbf{C}$

C=A+B

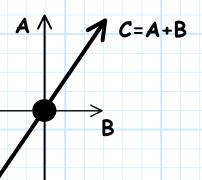
The magnitude and direction of C is determined by the headto-tail rule.

A

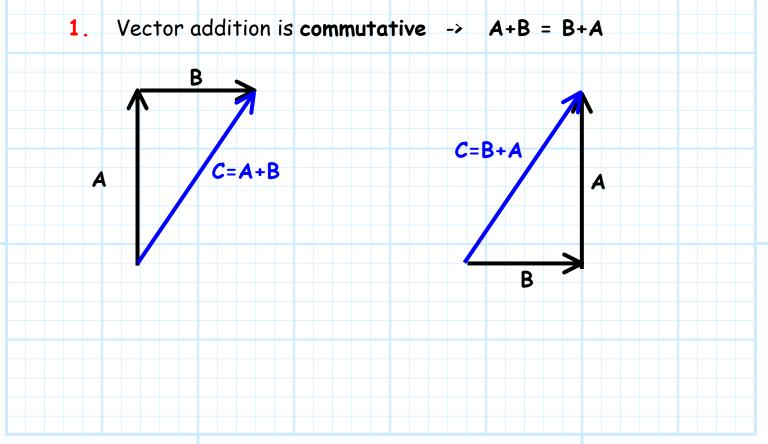
Jim Stiles

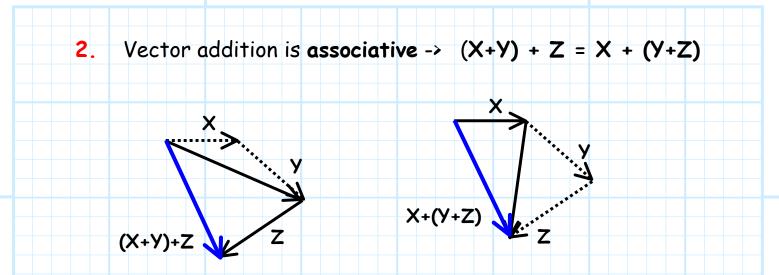
This is not a **provable** result, rather the head-to-tail rule is the **definition** of vector addition. This definition is used because it has many **applications** in physics.

For **example**, if vectors **A** and **B** represent two **forces** acting an object, then vector **C** represents the **resultant force** when **A** and **B** are simultaneously applied.

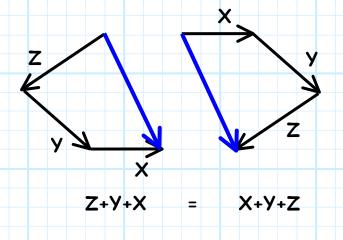


Some important properties of vector addition:





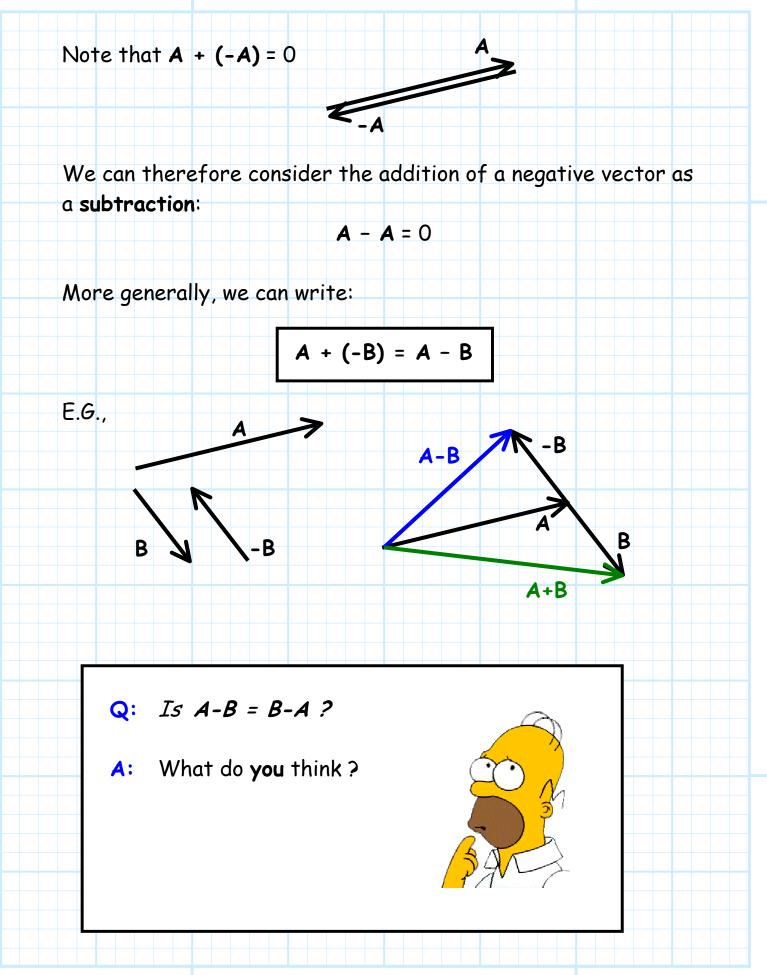
From these two properties, we can conclude that the addition of several vectors can be executed in any order:



Vector Subtraction

First, we define the **negative** of a vector to be a vector with **equal magnitude** but **opposite direction**.

A



Multiplicative Operations of Vectors and Scalars

Consider a scalar quantity *a* and a vector quantity **B**. We express the multiplication of these two values as:

$a\mathbf{B} = C$

In other words, the product of a scalar and a vector—is a vector

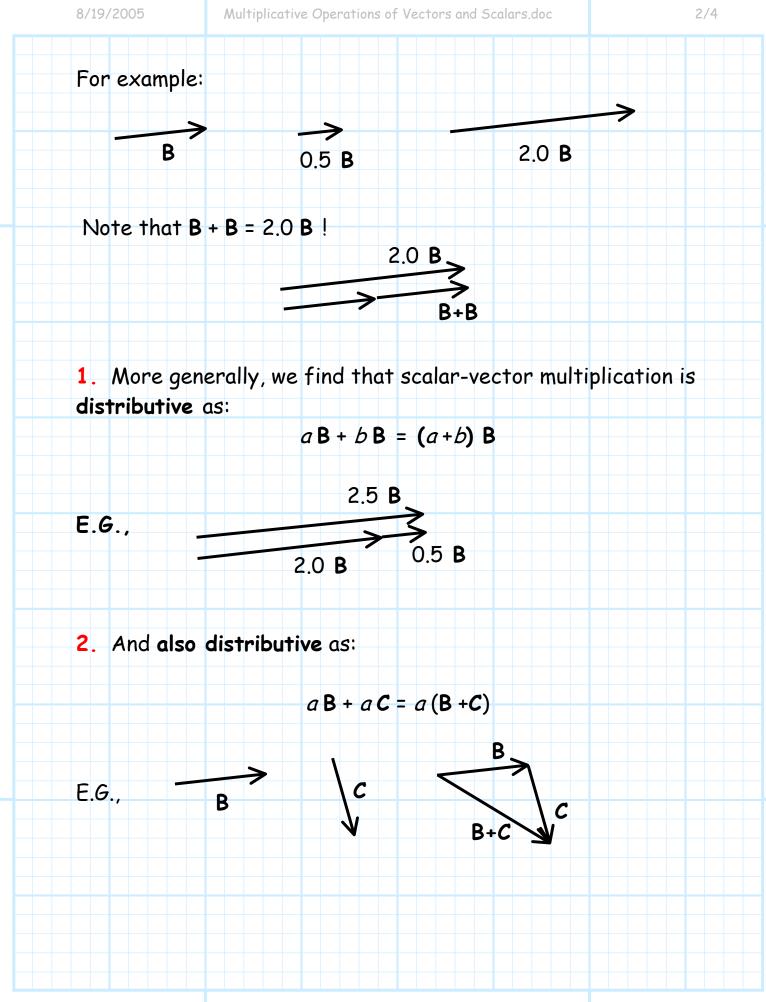
Q: OK, but what is vector C? What is the meaning of a B?

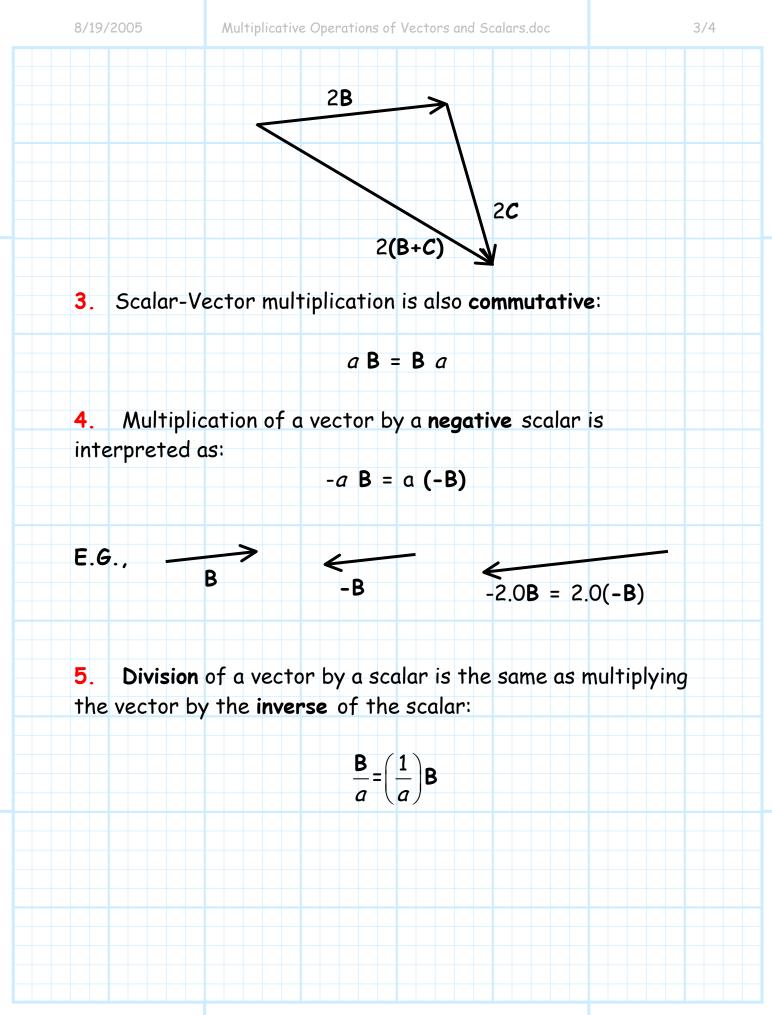
A: The resulting vector **C** has a **magnitude** that is equal to a times the magnitude of B. In other words:

$$|\mathbf{C}| = a |\mathbf{B}|$$

However, the **direction** of vector **C** is **exactly** that of **B**.

Therefore multiplying a vector by a scalar changes the magnitude of the vector, but not its direction.





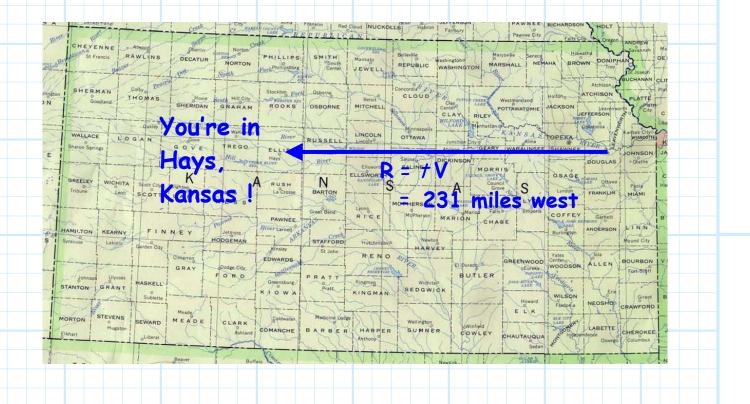
Scalar-Vector multiplication is likewise used in many **physical** applications. For example, say you start in Lawrence and head **west** at **70 mph** for exactly **3.3 hours**.

Note your velocity has both direction (west) and magnitude (70 mph) - it's a vector! Lets denote it as V = 70 mph west.

Likewise, your travel time is a scalar; lets denote it as t = 3.3 h.

Now, lets **multiply** the two together (i.e., t V). The **magnitude** of the resulting vector is 70(3.3) = 231 miles. The **direction** of the resulting vector is of course **unchanged**: west.

A vector describing a distance and a direction—a **directed distance**! We find that $tV = \overline{R}$, where \overline{R} identifies your **location** after 3.3 hours!



The Dot Product

The dot product of two vectors, A and B, is denoted as A-B .

The dot product of two vectors is **defined** as:

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta_{AB}$$

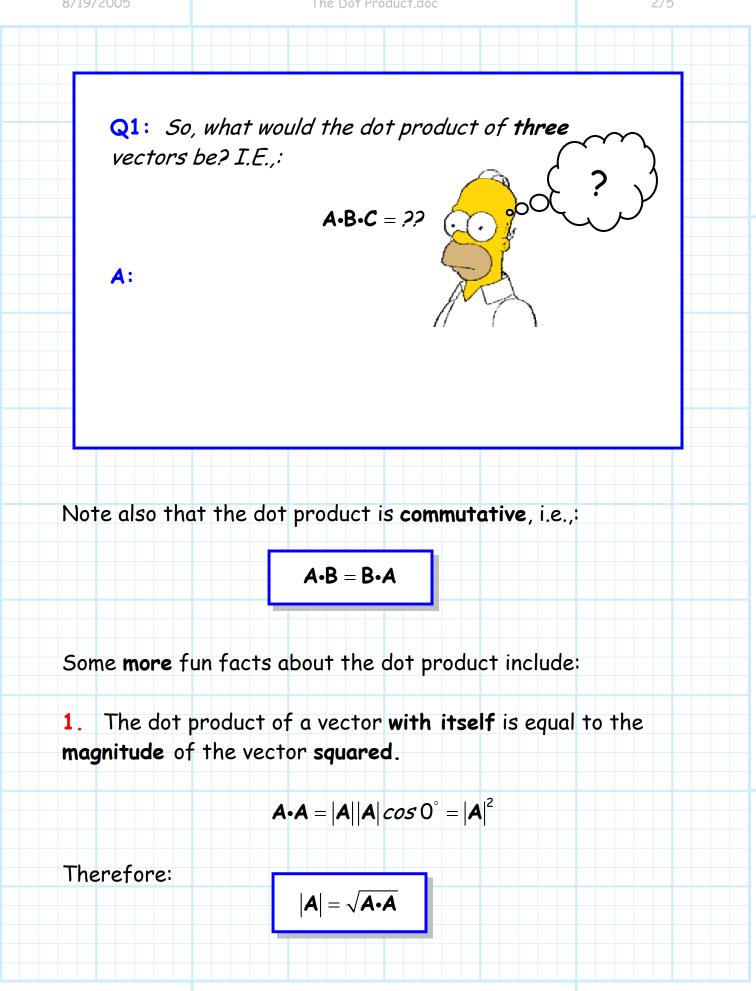
where the angle θ_{AB} is the angle formed **between** the vectors **A** and **B**.

1.

IMPORTANT NOTE: The dot product is an operation involving **two vectors**, but the result is a **scalar** !! E.G.,:

 $\mathbf{A} \cdot \mathbf{B} = c$

The dot product is also called the **scalar product** of two vectors.

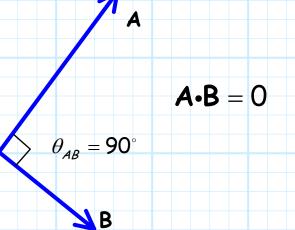


Jim Stiles

2. If
$$\mathbf{A} \cdot \mathbf{B} = 0$$
 (and $|\mathbf{A}| \neq 0$, $|\mathbf{B}| \neq 0$), then it must be true that:

$$\cos \theta_{AB} = 0 \implies \theta_{AB} = 90^{\circ}$$

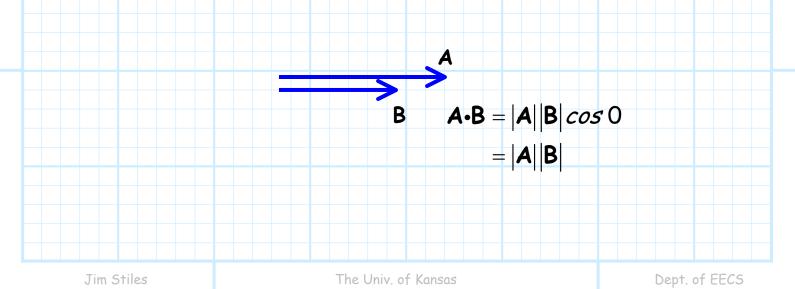
Thus, if **A**•**B** = 0, the two vectors are **orthogonal** (perpendicular).

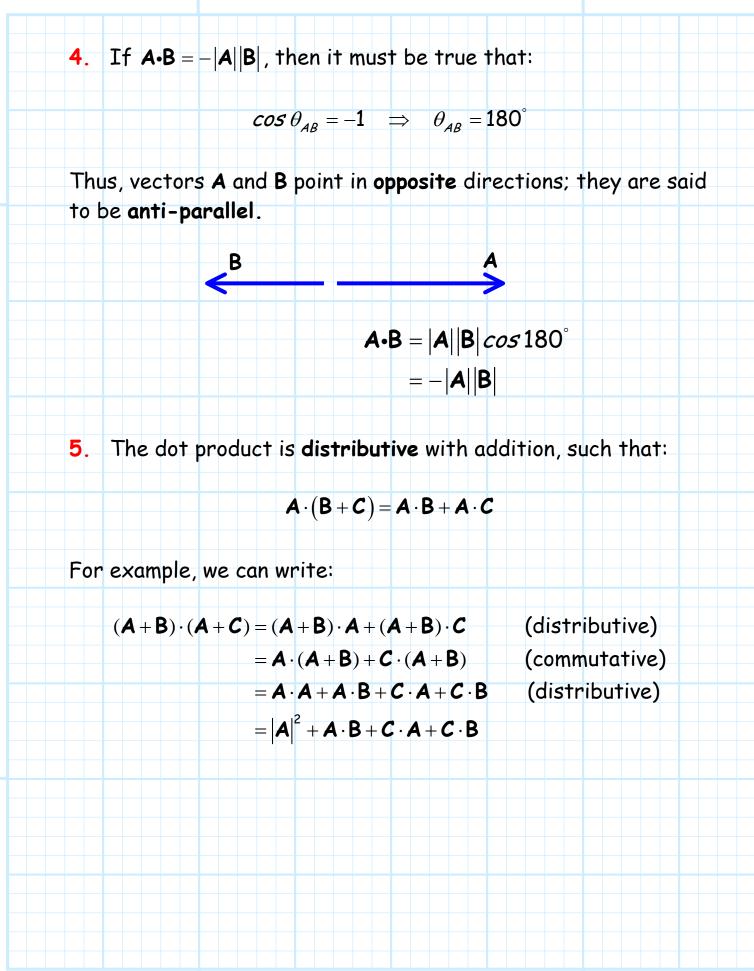


3. If $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}|$, then it must be true that:

$$\cos\theta_{AB} = 1 \quad \Rightarrow \quad \theta_{AB} = 0$$

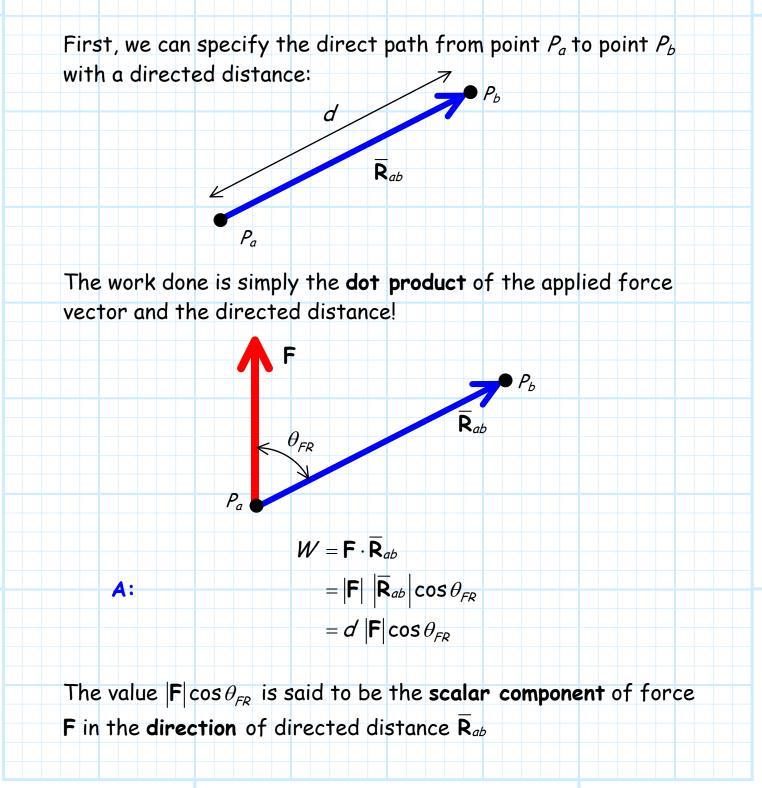
Thus, vectors **A** and **B** must have the **same direction**. They are said to be **collinear** (parallel).





One application of the dot product is the determination of work. Say an object moves a distance d, directly from point P_a to point P_b , by applying a constant force **F**.

Q: How much work has been done?



Jim Stiles

<u>The Unit Vector</u>

Now that we understand multiplication and division of a vector by a scalar, we can discuss a very important concept: **the unit vector**.

Lets begin with vector **A**. Say we **divide** this vector by its **magnitude** (a scalar value). We create a new vector, which we will denote as \hat{a}_{A} :

$$\hat{a}_{A} = rac{\mathbf{A}}{|\mathbf{A}|}$$

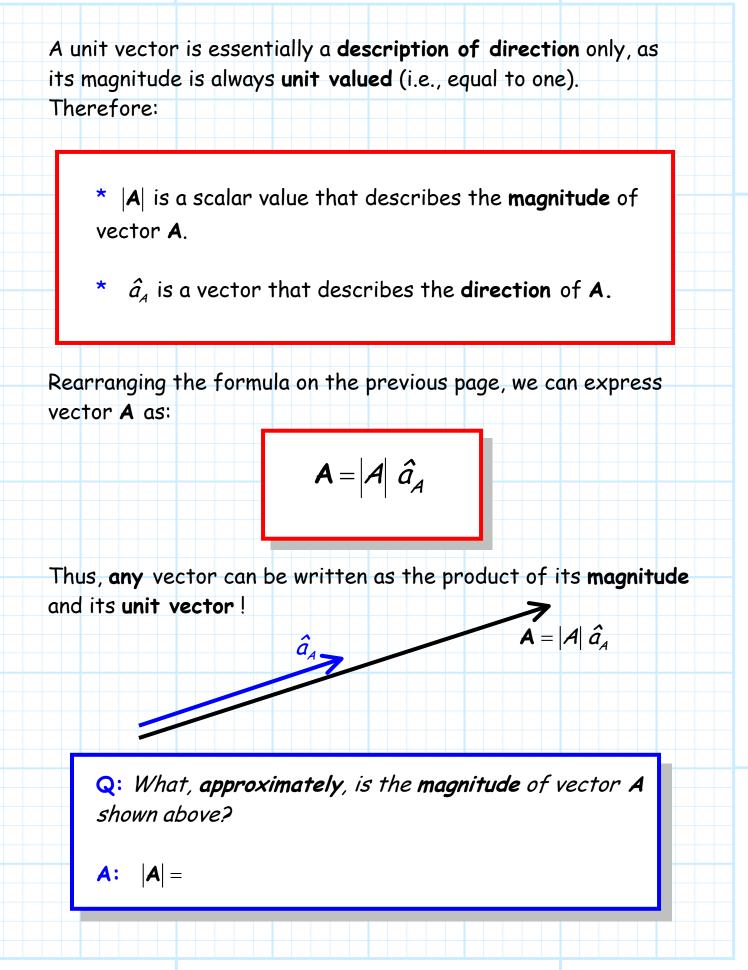
Q: How is vector \hat{a}_{A} related to vector **A**?

A: Since we divided A by a scalar value, the vector \hat{a}_{A} has the same direction as vector A.

But, the **magnitude** of \hat{a}_{A} is:

$$\left|\hat{a}_{\mathcal{A}}\right| = \frac{|\mathbf{A}|}{|\mathbf{A}|} = 1$$

The vector \hat{a}_{A} has a magnitude equal to one ! We call such a vector a unit vector.



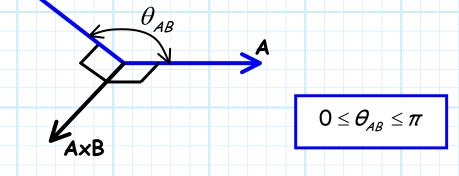
The Cross Product

The cross product of two vectors, A and B, is denoted as $A \times B$.

The cross product of two vectors is **defined** as:

$$\mathbf{A} \times \mathbf{B} = \hat{a}_n |\mathbf{A}| |\mathbf{B}| \sin \theta_{AB}$$

Just as with the dot product, the angle θ_{AB} is the angle between the vectors A and B. The unit vector \hat{a}_n is **orthogonal** to both A and B (i.e., $\hat{a}_n \cdot \mathbf{A} = 0$ and $\hat{a}_n \cdot \mathbf{B} = 0$).

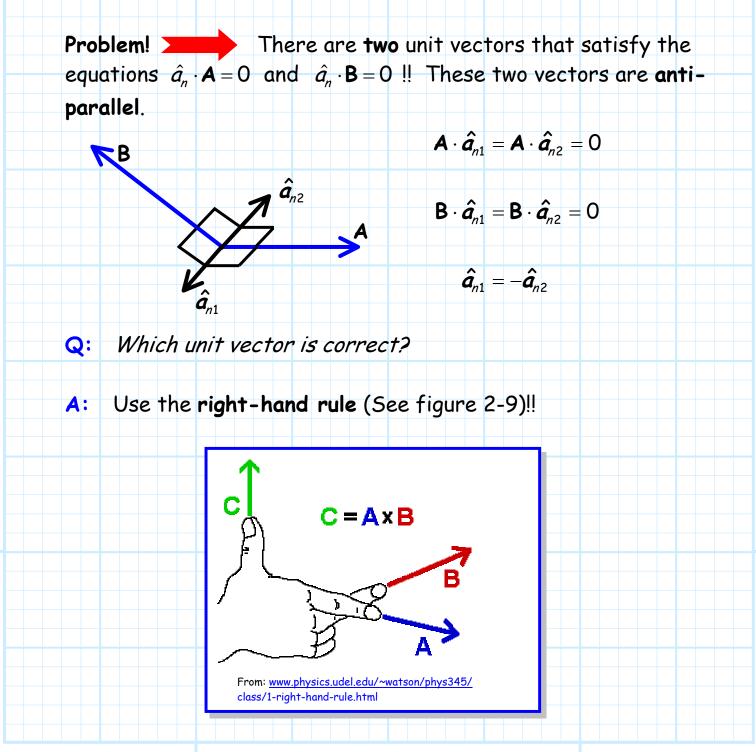


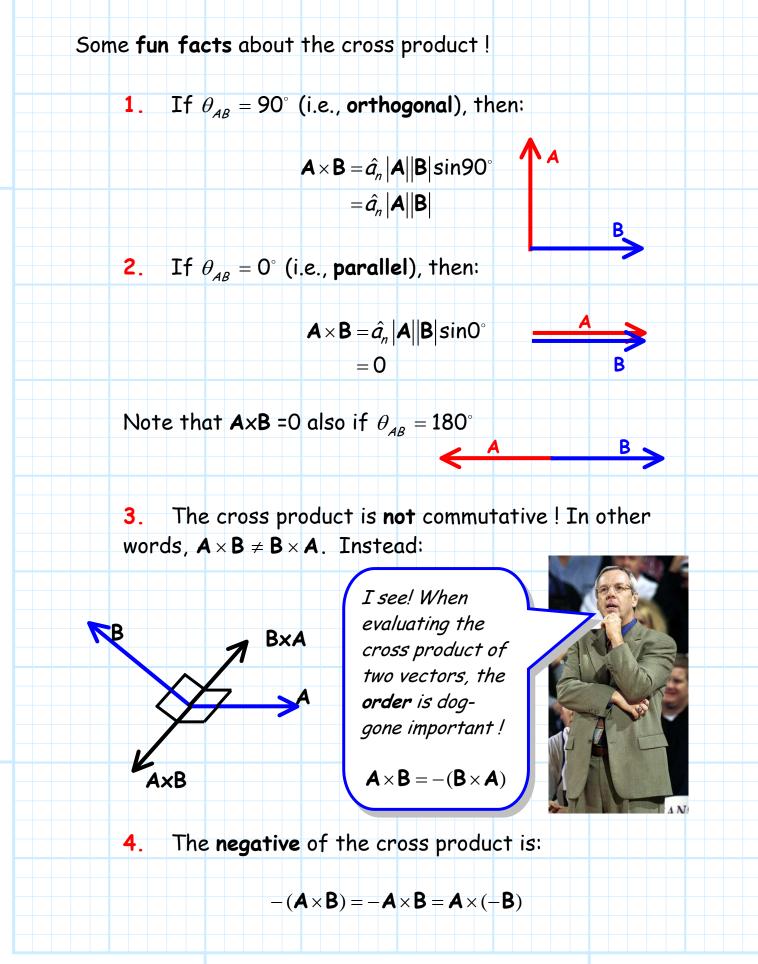
IMPORTANT NOTE: The cross product is an operation involving **two vectors**, and the result is also a **vector**. E.G.,:

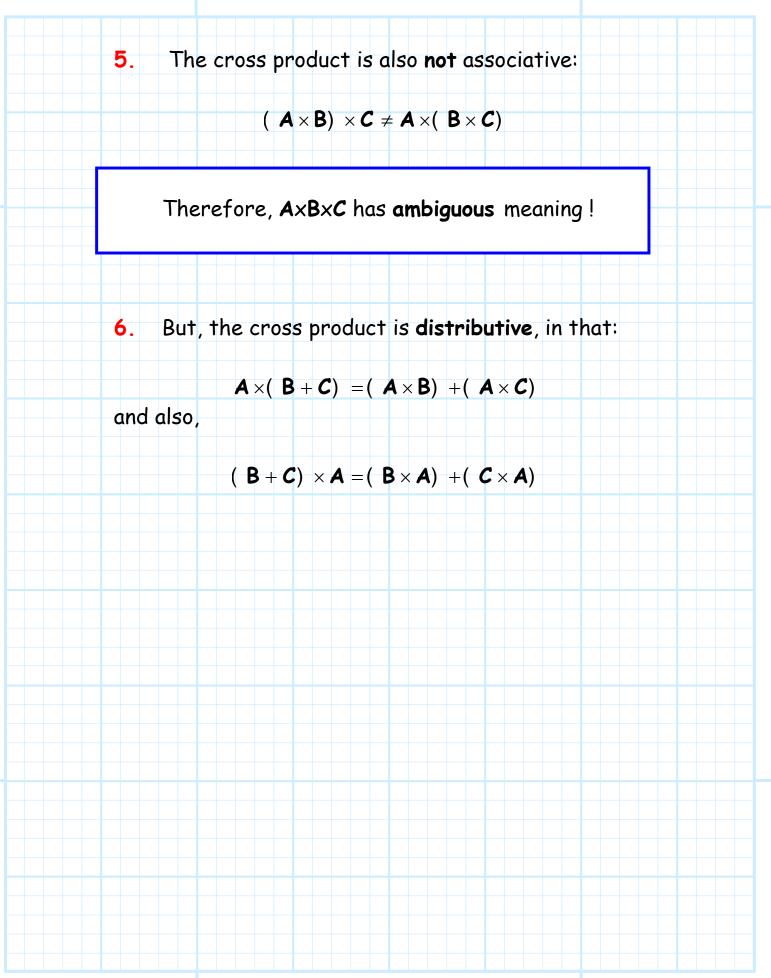
$\mathbf{A} \times \mathbf{B} = \mathbf{C}$

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta_{AB}$$

Whereas the **direction** of vector $A \times B$ is described by unit vector \hat{a}_n .







The Triple Product

The **triple product** is not a "new" operation, as it is simply a combination of the **dot** and **cross** products.

The triple product of vectors **A**, **B**, and **C** is **denoted** as:

A · B×C

Q: Yikes! Does this mean:

 $(\mathbf{A} \cdot \mathbf{B}) \times \mathbf{C}$

or

 $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$

A: The answer is **easy** ! Only one of these two interpretations makes sense:

In the **first** case, $\mathbf{A} \cdot \mathbf{B}$ is a scalar value, say $d = \mathbf{A} \cdot \mathbf{B}$. Therefore we can write the first equation as:

$$(\mathbf{A} \cdot \mathbf{B}) \times \mathbf{C} = \mathbf{d} \times \mathbf{C}$$

But, this makes no sense! The cross product of a **scalar** and a vector has **no meaning**.

In the second interpretation, the cross product $\mathbf{B} \times \mathbf{C}$ is a vector, say $\mathbf{B} \times \mathbf{C} = \mathbf{D}$. Therefore, we can write the second equation as:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \cdot \mathbf{D}$$

Not only does this make sense, but the result is a scalar !

The triple product $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$ results in a scalar value.

The Cyclic Property

It can be shown that the triple product of vectors **A**, **B**, and **C** can be evaluated in three ways:

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A}$$

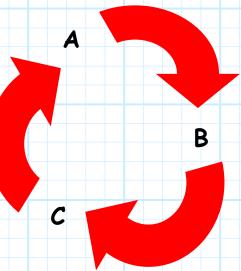
But, it is important to note that this does **not** mean that order is unimportant! For example:

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} \neq \mathbf{A} \cdot \mathbf{C} \times \mathbf{B}$$

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} \neq \mathbf{C} \cdot \mathbf{B} \times \mathbf{A}$$

$$\mathbf{A} \cdot \mathbf{B} \mathbf{X} \mathbf{C} \neq \mathbf{B} \cdot \mathbf{A} \mathbf{X} \mathbf{C}$$

The cyclical rule means that the triple product is invariant to shifts (i.e., rotations) in the order of the vectors.



There are **six ways** to arrange three vectors. Therefore, we can group the triple product of three vectors into **two groups** of **three products**:

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A}$$

$$\mathbf{B} \cdot \mathbf{A} \times \mathbf{C} = \mathbf{C} \cdot \mathbf{B} \times \mathbf{A} = \mathbf{A} \cdot \mathbf{C} \times \mathbf{B}$$

but, $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = -(\mathbf{B} \cdot \mathbf{A} \times \mathbf{C})$

Example: Vector Algebra

Consider the scalar expression:

We can manipulate and simply this expression using the rules of **scalar algebra**:

$$ac + bc + bd + ad = ac + ad + bc + bd$$
 (commutative)
$$= (ac + ad) + (bc + bd)$$
 (associative)
$$= a(c + d) + b(c + d)$$
 (distributive)
$$= (a + b)(c + d)$$
 (distributive)

We can likewise perform a similar analysis on vector expressions! Consider now the expression:

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} \times \mathbf{A}$$

We can show that this is actually a very familiar and basic vector operation!

 $(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} \times \mathbf{A} = \mathbf{C} \cdot \mathbf{A} \times (\mathbf{A} + \mathbf{B})$ (Triple product identity) $= \mathbf{C} \cdot (\mathbf{A} \times \mathbf{A} + \mathbf{A} \times \mathbf{B})$ (Cross Product Distibutive) $= \mathbf{C} \cdot \mathbf{A} \times \mathbf{B}$ (Since $\mathbf{A} \times \mathbf{A} = 0$) $= \mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$ (Triple product identity)

Or, for example, if we consider:

$$(A + B) \cdot (B + 2A)$$
we find:

$$= (A + B) \cdot (B + 2A)$$

$$= A \cdot (B + 2A) + B \cdot (B + 2A) \quad (dot product distributive)$$

$$= A \cdot B + A \cdot 2A + B \cdot B + B \cdot 2A \quad (dot product distributive)$$

$$= A \cdot B + 2|A|^{2} + |B|^{2} + 2B \cdot A \quad (c \cdot c = |C|^{2} \text{ identity})$$

$$= A \cdot B + 2|A|^{2} + |B|^{2} + 2A \cdot B \quad (dot product communitive)$$

$$= 2|A|^{2} + 2A \cdot B + A \cdot B + |B|^{2} \quad (vector addition commutative)$$

$$= 2|A|^{2} + (2 + 1)A \cdot B + |B|^{2} \quad (scalar multiply distributive)$$

$$= |A|^{2} + 3A \cdot B + |B|^{2} \quad (2 + 1 = 3)$$
Keep in mind one very important point when doing vector algebra—the expression can never change type (e.g., from vector to scalar)!
In other words, if the expression initially results in a vector (or scalar).
In other words, if the expression be a vector (or scalar).

change

A:

For example, we find that the following expression **cannot** possibly be true!

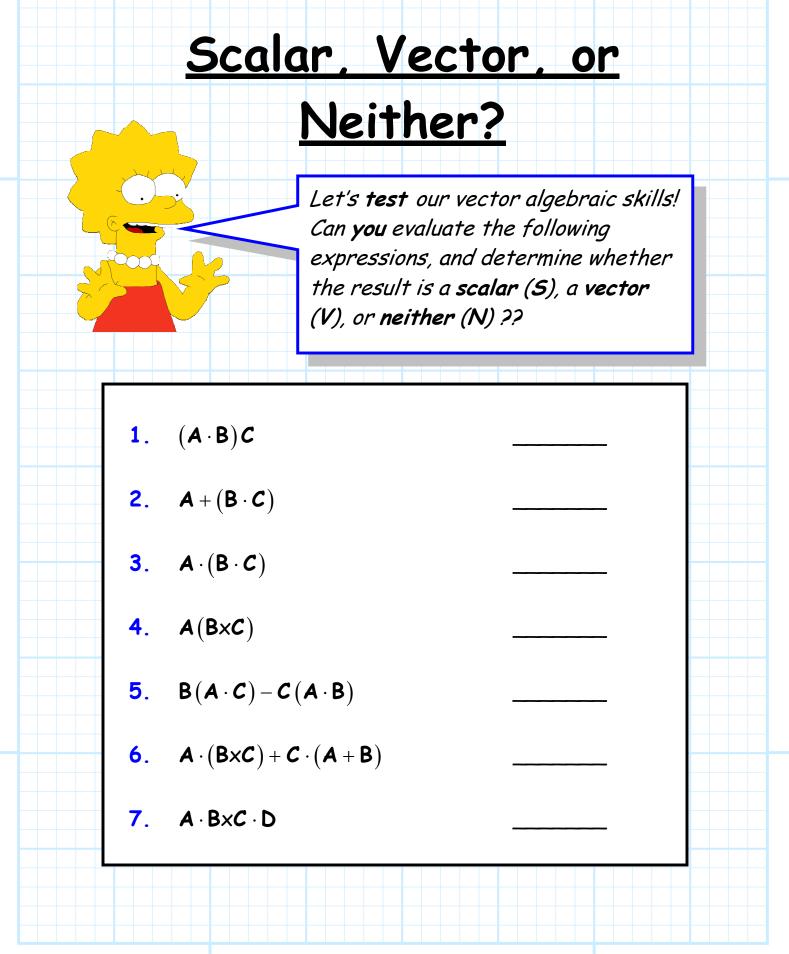
$$\mathbf{A} \times \mathbf{B} + (\mathbf{B} \cdot \mathbf{C}) \mathbf{A} = \mathbf{B} \cdot (\mathbf{A} \times \mathbf{C}) + (\mathbf{A} + \mathbf{B}) \cdot \mathbf{C}$$

```
Likewise, be careful not to create
expressions that have no
mathematical meaning whatsoever!
```

Examples include:

 $(\mathbf{A} \cdot \mathbf{B}) \times \mathbf{C}$

 $\mathbf{A} + (\mathbf{B} \cdot \mathbf{C})$



<u>Orthogonal and</u> <u>Orthonormal Vector Sets</u>

We often specify or relate a set of scalar values (e.g., x, y, z) using a set of scalar equations. For example, we might say:

$$x = y$$
 and $z = x + 2$

From which we can conclude a **third** expression:

$$z = y + 2$$

Say that we now add a **new** constraint to the first two:

$$x + y = 2$$

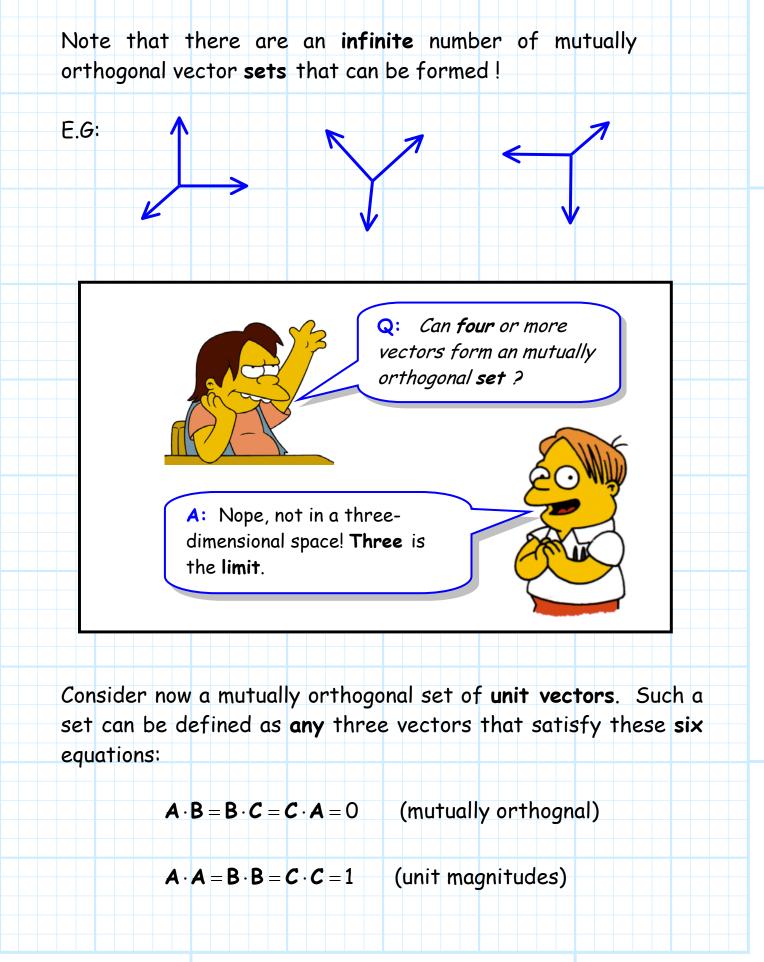
We can now **specifically** conclude that:

$$x=1 \qquad y=1 \qquad z=3$$

Note we can likewise use **vector** equations to specify or relate a set of **vectors** (e.g., **A**, **B**, **C**).

For example, consider a set of **three** vectors that are oriented such that they are **mutually orthogonal** !

In other words, each vector is perpendicular to each of the other two: A В Note that we can describe this orthogonal relationship mathematically using three simple equations: $\mathbf{A} \cdot \mathbf{B} = 0$ $\mathbf{A} \cdot \mathbf{C} = \mathbf{0}$ $\mathbf{B} \cdot \mathbf{C} = 0$ We can therefore define an orthogonal set of vectors using the dot product: Three (non-zero) vectors A, B and C form an orthogonal set iff they satisfy $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{C} = \mathbf{C} \cdot \mathbf{A} = 0$ Jim Stiles The Univ. of Kansas Dept. of EECS



$$\hat{a}_{A} \cdot \hat{a}_{B} = \hat{a}_{B} \cdot \hat{a}_{C} = \hat{a}_{C} \cdot \hat{a}_{A} = 0$$

Again, there are an **infinite** number of **orthonormal** vector sets, but each set consists of only **three** vectors.